Clock User Manual

Version 2.0
7th October, 2014

Clock built and sketches written by: Andrew Amos andrew@amos.gs
Description

The clock consists of:

1. Control Unit

2. Clock Drive Motor

3. Bell Drive Assembly
Control Unit
The control unit consists of:

· a power supply giving 12V DC 5A. Purchased from Jaycar. This provides all the power required for the clock. Possible replacement is their CAT. NO. MP3242

There is a smoothing capacitor (2200uF) placed where the power is connected to the motor drive shield. Without this is place, it was found that power glitches would occasionally occur when the clock motor was driven which then affected the Arduinos. The 12V from the power supply is connected via a link on the motor drive shield so that it will supply 12V to the Clock Control Arduino stack. A link from the Vin pin on the attached display shield is used to the supply 12V to the GPS Receiver Arduino stack.

· a GPS receiver - Ublox NEO 6M 0 001. This receives a time signal from the satellites and passes it on to the GPS Receiver Arduino.

Bought from:

http://www.aliexpress.com/item/CN-06-GPS-receiver-super-U-blox-GPS-module-built-active-ceramic-antenna-MWC-13109/600136346.html
There are two ways to test the GPS receiver:

1. Use an Arduino board with the CPU removed. Connect VCC (Red) to 3.3V, GND (Black) to GND, RxD (Green) to D0, TxD (Yellow) to D1.

2. Configure the GCA in Echo mode

https://www.sparkfun.com/tutorials/173
http://arduiniana.org/libraries/TinyGPS/
Windows GPS Control software:

http://www.u-blox.com/en/evaluation-tools-a-software/u-center/u-center.html
Use View / Configuration View, then

MSG and deselect unwanted messages.

CFG - Save current conguration

TinyGPS code only does: "GPRMC" and "GPGGA"

· a GPS Receiver Arduino (GRA). A generic Arduino Uno. This receives the time signal from the GPS receiver and sends it on to the Clock Control Arduino (CCA).

It also receives signals from the two hall effect receivers (see www.freetronics.com/hall). These provide a pulse when the hour and minute hands are at the top. This allows the system to know where the hands of the clock are physically. They actually get their signal from a magnet attached to the hand counter weights. The signal from these is also passed on to the CCA. The main reason for the additional Arduino is because the CCA does not have enough pins available to handle all these inputs. The signals are passed on to the CCA using an I2C (I squared C) bus using pins A4 and A5. This uses the Arduino “wire” library.

The GRA also has a generic (DFRobot or Alibaba style) LCD Keypad Shield attached. This displays the Zulu (GMT) time.

5V and 0V lines from the GRA stack are connected to two “busses”. The GPS unit and the clock hand position sensors and then powered from this buss. 0V from each Arduino stack is also commoned on the 0V buss.

· A Clock Control Arduino (CCA). This controls the clock hands and drives the bell. It receives the time and hand position signals from the GRA using I2C. It has a motor drive shield to drive both the clock hands and the bell. The CCA is an “Eleven”, modified as shown in the Shield Pinouts spreadsheet.

The CCA has a Motor Drive Shield (MDS) fitted, which is a:

Pololu Dual VNH5019 Motor Driver Shield for Arduino

US$59.95 @ http://www.pololu.com/catalog/product/2502 (this has now been replaced by http://www.pololu.com/product/2507)

It also has a generic LCD Keypad Shield attached.
Motors
There are three motors involved. One to drive the hands, and two to drive the bell hammer. These are:

131.25:1 Metal Gearmotor 37Dx57L mm with 64 CPR Encoder:

US$39.95 @ http://www.pololu.com/catalog/product/1447
Key specs at 12 V: 80 RPM and 300 mA free-run, 250 oz-in (18 kg-cm) and 5 A stall

The bell motors do not have the CPR encoder, as the current draw is used instead. This is read from the MDS to tell whether the motor is free running or pushing against bell arm. These motors are driven in parallel, with one going in the reverse direction. This gives roughly twice the power and torque for driving the bell. The bell hammer weighs about 3.3kg on a 30cm arm. The calculated required torque was 16.5kg-cm. The two motors should provide about twice that.

Mechanical Details

The system is mounted on galvanized angle and bolts:

http://www.bunnings.com.au/metal-mate-heavy-duty-galvanised-slotted-angle-starter-pack-_p1090896
The bell drive mechanism uses the original bell hammer driven by two motors mounted on a frame made from the above angle. The motors drive a wheel which presses down on the level arm of the hammer. When the wheel goes past the end of the arm, the arm is released and the hammer falls, being braked by the leae spring under the hammer. The distance that the hammer is from the surface of the bell is controlled by washers being placed on the rear bolts that secure the mechanism to the mounting frame. 1 washer of about 1mm thickness will move the head about 4mm.

Software Description

There are two pieces of software (“sketches” to Arduino terminology):

1. GPS Sketch

2. Control Sketch

Note: The buttons are not perfect, they may require a couple of tries for a push to be recognised.
GPS Sketch

The GPS sketch (named GPS_Receiver) does two tasks:

1. It takes the raw GPS data from the GPS unit, and sends it to the Control Arduino via I2C.

2. It monitors the Hall Effect sensors mounted to detect the position of the hour and minute hand counter weights. When the counter weight for each hand is in the right position, it sends a signal to the Control Arduino via I2C.

To reprogram this sketch, you will need a Standard-B USB plug (they are different for historical reasons). It runs on a generic Arduino Uno.

Control Sketch

The control sketch (named Clock_Analog) is where the majority of the functionality resides.

To reprogram this sketch, you will need a Mini-B USB plug. It runs on an Arduino Eleven which has been modified as per the Shield Pinouts document. See http://www.freetronics.com/products/eleven for details of the Eleven.

On power up, it assumes the hands are in the right place. When it receives a signal from the GPSA, it can then correct the hand position accordingly.

TIME ZONE

The time zone is configurable to the minute. This is necessary as some areas have fractions of an hour for time zones.

DAYLIGHT SAVING

The system assumes daylight saving starts at 2am on the (WK)th Sunday of the (MTH)th Month and ends at 3am.

See http://australia.gov.au/about-australia/our-country/time which says:
Daylight Saving Time begins at 2am on the first Sunday in October, when clocks are put forward one hour. It ends at 2am (which is 3am Daylight Saving Time) on the first Sunday in April, when clocks are put back one hour.
If no daylight saving, then set both weeks and months to 0.

The system should automatically adjust for the correct daylight saving setting, whether it has been turned off when the changeover occurs or not. The correction will only occur on the hour.

BELL TIME

The start and end time of the bell is configurable. Set them both to the same time to disable the bell.

CLOCK MOTOR DRIVE

The clock drive motor only drives the minute hand directly. The “head gear” - the gear train coming off the minute drive, takes this mechanical drive and gears it down to the corresponding hour hand drive.

The motor drive code is run every 100mS. When the hands should move, a drive pulse is delivered to the motor of sufficient length to make it move the correct amount for 12 seconds. The Arduino then monitors and counts the number of pulses received from the encoder on the motor. It uses an interrupt routine to achieve this. As the motor and hands have a certain amount of momentum, it can take a little while for all the pulses to be received, hence the 100mS delay before making another decision on whether to move the hands again.

As you would expect, the interrupt routines have a minimum of code in them.

This 100mS delay also means that the hands will move at a reasonably sedate rate when making large time corrections, e.g. after a power outage. It will make a maximum of a 12 second correction every 100mS. Only one encoder input is connected to the interript, giving 16 pulses per motor rotation. The other encoder input is then read during the interrupt routine, to check which direction the hands have moved, so as to make sure the count is correct, even if the hands bounce back or are moved by the wind or whatever.
As said, only one of the encoder lines is monitored to count pulses.

1 rotation every 60 minutes = 3600 seconds

16 pulses per motor rotation, 131.25 gear reduction = 2100 pulses per hour

= 35 pulses per minute
So, best to drive it at 7 pulses every 12 seconds.

BELL MOTOR DRIVE

The bell code only runs every hour. It only runs if a signal has been received from the GPSA. It would not be appreciated if, due to a power outage, the clock thought it was midday at midnight, and chimed 12!

USB CONTROL

The CCA can be controlled and test routines run, using the USB port. Messages are:

· Set date and time

Format: Tdddddddddd

where dddddddddd is the desired time in UNIX format

To get the Time adjust string from a UNIX command line:

For Sydney:

> TZ_adjust=9; echo T$(($(date +%s)+60*60*$TZ_adjust))

For Adelaide (can't do 0.5 hours), so do:

> echo T$(($(date +%s)+60*60*9+60*30))

or just use:
http://www.onlineconversion.com/unix_time.htm
· Daylight saving control

Format: Ddxxxxxxxxx

where x is any character

d = 0 for daylight saving off

d = 1 for daylight saving on

· Notify Physical Hand Position

This tells the CCA where the hands on the face are currently positioned, in 12 hour format.

Format: Fhhmmxxxxxx

where x is any character

· Tests

· Drive hands a complete circle – based on counting the encoder pulses

This can be used to check that the encoder pulse count for a complete circle has been correctly determined.

Format: C01xxxxxxxx

 where x is any character

· Read the entire EEPROM contents

Format: C02xxxxxxxx

where x is any character

· Test the EEPROM (use sparingly)

Format: C03xxxxxxxx

where x is any character

· Read a position in the EEPROM

Format: C04mmmmxxxxx

where mmmm is the position in decimal and x is any character

· Write to a position in the EEPROM

WARNING - USE SPARINGLY!!!! The EEPROM has limits to how many times a location can be written to.

Format: C05mmmmvvvxx

where mmmm is the position in decimal, vvv is the value to be written and x is any character
· Motor speed plot.

Turns on the motor for increasing amounts of time and maps the number of encoder clicks received. This may be useful for finding out the optimum motor drive time.

Format: C06xxxxxxxx

where x is any character
· Bell Ring

Rings the bell once.

Format: C07xxxxxxxx

where x is any character
· Drive the hands a complete circle – based on minute hand detectors

This can be used to check that the encoder pulse count for a complete circle has been correctly determined. The resultant figure gives the number of pulses for an hour.

Format: C08xxxxxxxx

where x is any character
GPS Receiver Sketch

The GPS receiver sketch performs two functions:

1. It takes the information from the GPS and passes it on to the CCA via the I2C bus, and

2. It monitors the signals from the hour and minute hand, and if the detectors flag that the hand counterweight is in the bottom position (hand at the top), then it passes this information on to the CCA.

The time signal to the CCA is of the form:
 Format: Gdddddddddd\n
 Where d is a digit, in unix time format

USB CONTROL

Test functionality is limited to three states, selected by successively pressing the SELECT button:

1. Normal

This the normal operational state and is selected automatically on power up. In this state, the output on the USB port is limited to the signals sent to the CCA.

2. Echo

In this state, the word “Echo” appears on the screen. Any signal from the GPS is ignored, and messages received on the USB port are echoed on the I2C bus. This can be used to test the CCA sketch. It can also be used to just stop the flow of updates from the GPS, for testing purposes.

E.g. G1428168570 (4/4/15 17:29:30) will give: 5/4/15 2:59:30 (just before Daylight Saving End)

and G1443889770 (3/10/15 16:29:30) will give 4/10/15 1:59:30 (just before Daylight Saving Start)

3. GPS

In this state, the word “GPS” appears on the screen, and the messages received from the GPS unit (GPRMC etc) are echoed on the USB port, and messages received on the USB port are sent to the GPS. This can be used to configure the GPS receiver, as discussed ealrier under GPS unit testing.
Display Panel Usage

Physically, the bottom display is used to control the clock.
Top Display
The top display, mounted on the GPS Arduino, displays the current date and time as received from the GPS – so it is in GMT (UTC) time. On power up, this will be blank for some time, while the GPS unit acquires a fix with the satellites.

GMT Time

[image: image1.jpg]R e i 0 i o) o iasp b ns TG o g e

VSSVDDVO RS RW £ DO DI D2 DG D4 DS D6 D7 A o

i i et il e o R RO R

- Pt 1 At S S o e SRR e T

e K e 5 Moyt et S b et s o S i re— ~ i SN U—— i et PR
S R e G D

g ey TR e g o U e I G G v i o e B e

Bottom Display
The bottom display, by default, displays the current local time. It too will be blank until the GPS receiver has had enough time to get a fix.

To get around the menu system, use the UP and DOWN buttons to select the desired item, then use the RIGHT and LEFT buttons to move to the desired sub-item (it will flash), then use the UP and DOWN buttons to modify that sub-item, and then when all sub-items are showing the desired value, use the SELECT button to store the values selected. Holding a button down will cause it to repeat.

The RESET button will reset the Arduino to last stored values.
Time

You can use this to modify the current time, if the GPS is not working. The character at the end shows whether daylight saving is currently active “D” or not “N”.

[image: image2.jpg]s i 4 O T T i,

Face Time

This shows the time that the system thinks that the hands on the face indicate. You can correct this by entering the actual face time.

[image: image3.jpg]"

" Wl
e
¥

T

S ST -
£
N g
n
- EBE R

*
pace AT P PR T T T

Face Time
A5

)
B
»

|
D

Daylight Saving Start

Enter the month of the year and week of that month.

[image: image4.jpg]

Daylight Saving Ends

Enter the month of the year and week of that month.

[image: image5.jpg]o

’ ; , o P e B T D O O
SR D S e o i Sl AR S0 i s 5 -
gﬁaﬁ S R R T e N g g

S L S

.

il RET . PuRe @
2 Q "‘ bl m;.
o iRsT

Bell Start Time

The bell will start ringing at this time. If you don't want the bell to ring at all, set the start and end time to be equal.

[image: image6.jpg]oﬁ ‘.,‘"
Rig ¢

1 Oiintantt 3805

Bell Finish Time

The bell will ring for the last time at this time.
[image: image7.jpg]

Time Zone

Enter the difference between the current standard (no daylight saving) time and the Greenwich Mean Time.

[image: image8.jpg]¢TERNIENNN TN C

